In a nutshell: The wave equation in one dimension

Given a wave speed c, two spatial boundary points [a, b] and two time boundaries $[t_0, t_f]$, and functions that give the boundary values at time t, $u_a(t)$ and $u_b(t)$ as well as an initial amplitude $u_0(x)$ and a rate of change of that amplitude $u_0^{(1)}(x)$ at time t_0 .

Parameters:

- n_x The number of sub-intervals into which [a, b] will be divided.
- n_t The number of sub-intervals into which time will be divided where $n_t \ge \left\lceil \frac{2c(t_f t_0)}{h} \right\rceil$.
- 1. Set $h \leftarrow \frac{b-a}{n_x}$ and $x_k \leftarrow a + kh$ noting that $x_{n_x} = b$.
- $2. \quad \text{Set } \Delta t \leftarrow \frac{t_f t_0}{n_t} \text{ and } t_\ell \leftarrow t_0 + \ell \Delta t \; .$
- 3. For k going from 0 to n_x , set $u_{k,0} \leftarrow u_{\text{init}}(x_k)$.
- 4. Set $u_{0,1} \leftarrow u_a(t_1)$ and $u_{n_y,1} \leftarrow u_b(t_1)$, and

for
$$k$$
 going from $n_x - 1$, set $u_{k,1} \leftarrow u_0(x_k) + u_0^{(1)}(x_k) \Delta t + \frac{1}{2}(c\Delta t)^2 \frac{u_{k-1,0} - 2u_{k,0} + u_{k+1,0}}{h^2}$.

5. For ℓ going from 1 to $n_t - 1$,

a. Set
$$u_{0,\ell+1} \leftarrow u_a(t_{\ell+1})$$
 and $u_{n,\ell+1} \leftarrow u_b(t_{\ell+1})$, and

b. for
$$k$$
 going from 1 to $n_x - 1$, set $u_{k,\ell+1} \leftarrow 2u_{k,\ell} - u_{k,\ell-1} + (c\Delta t)^2 \frac{u_{k-1,\ell} - 2u_{k,\ell} + u_{k+1,\ell}}{h^2}$.